
I nstructions for authors, subscriptions and further detai ls:

http: //redimat.hipatiapress.com

The Impact of Early Algebra: Results from a Longitudinal

Intervention

Bárbara M. Brizuela1 , Mara V. Martinez2, Gabriel le A. Cayton-

Hodges3

1 ) Tufts University, Department of Education.

2) University of I l l inois-Chicago, Mathematics, Statistics, and Computer

Science Department.

3) Educational Testing Service (ETS).

Date of publ ication: June 24th, 201 3

To cite this article: Brizuela, B.M. , Martinez, M.V. , and Cayton-Hodges, G.A.

(201 3). The Impact of Early Algebra: Results from a Longitudinal

Intervention. Journal ofResearch in Mathematics Education, 2 (2), 209-241 .

doi : 1 0.4471 /redimat.201 3.28

To link this article: http: //dx.doi .org/1 0.4471 /redimat.201 3.28

PLEASE SCROLL DOWN FOR ARTICLE

The terms and conditions of use are related to the Open Journal System

and to Creative Commons Non-Commercial and Non-Derivative License.

http: //dx.doi.org/10.4471/redimat.2013.28
http://dx.doi.org/10.4471/redimat.2013.28
http://redimat.hipatiapress.com


REDIMAT- Journal ofResearch in Mathematics Education Vol. 2 No. 2

June 2013 pp. 209-241.
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Abstract

In this paper, we provide evidence of the impact of early algebra (EA) over
time. We document this impact in the following ways: (a) by showing the
performance over time of an experimental group of 15 children on an algebra
assessment, from 3rd to 5th grade; and (b) by showing how the performance on
an algebra assessment of children from an experimental group differs from the
performance of a group of comparison students from their same elementary
school who did not receive EA instruction from 3rd to 5th grade. We compared
students’ scores through comparisons of means, correspondence factorial
analyses, and hierarchical analyses. Our results highlight the positive impact of
an early access to algebra, indicating that this early access is associated, when
we compare 3rd graders to 5th graders, with increased scores on items that
involve inequalities and graphs. When comparing experimental to comparison-
group students we find increased scores on items that involve variables,
functional relations, intra-mathematical contexts, tables, and algebraic
expressions. The study adds to a body of literature that has been arguing for
EA as well as a need to thread algebra throughout the mathematics curriculum,
starting in the earliest grades.
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Resumen

En este artículo, presentamos datos sobre el impacto del álgebra temprana (AT)
a través del tiempo. Documentamos este impacto de las siguientes maneras: (a)
mostrando el rendimiento a través del tiempo de un grupo experimental de 15
niños en una evaluación de álgebra, desde 3º hasta 5º grado de la escuela
primaria, y (b) mostrando cómo el rendimiento de los niños de un grupo
experimental en una evaluación de álgebra difiere del rendimiento de un grupo
de estudiantes de un grupo control de su misma escuela primaria que no
recibieron instrucción en AT desde 3º hasta 5º grado. Se compararon las
puntuaciones de los estudiantes a través de comparaciones de medias, análisis
factorial de correspondencias y análisis jerárquicos. Nuestros resultados ponen
de manifiesto el impacto positivo de un acceso temprano al álgebra, lo cual
indica que este acceso precoz está asociado, cuando se comparan los
estudiantes de 3º grado a los de 5º grado, con puntuaciones mayores en los
ítems de la evaluación que involucran desigualdades y gráficos. Al comparar el
grupo experimental con el grupo control, encontramos las puntuaciones
mayores en los ítems que involucran variables, relaciones funcionales,
contextos intra-matemáticos, tablas y expresiones algebraicas. El estudio
aporta a un cuerpo de literatura que ha estado discutiendo en favor de AT, así
como sobre la necesidad de integrar el álgebra en el currículo de matemáticas a
partir de los primeros grados.

Palabras Clave: matemática educativa, álgebra, matemáticas en la escuela
primaria.



algebra in early mathematics instruction. Our approach to EA falls
within an Arithmetic and Functions approach (Carraher & Schliemann,
2007). In this paper, we adopt Carraher and Schliemann’s (2007)
definition for EA as, “algebraic reasoning and algebra-related
instruction among young learners — from approximately 6 to 12 years
of age” (p. 670). We document this impact in the following ways:

a) By showing the performance over time of an experimental
group of 15 children on an algebra assessment, from 3rd to 5th
grade.
b) By showing how the performance on an algebra assessment
of children from an experimental group differs from the
performance of a comparison group of students.

As has been pointed out by Carraher and Schliemann (2007), there are
different approaches to EA: Arithmetic and Numerical Reasoning;
Arithmetic and Quantitative Reasoning; and Arithmetic and Functions.
Within the first approach, Arithmetic and Numerical Reasoning,
Carpenter, Franke, and Levi (2003) grounded their work on the study of
number sentences and their truth-value. Fujii and Stephens (2001 )
grounded their work on quasi-variables, referring to the implicit
variables that students seem to make use of in arithmetical contexts.
Within the second approach (i.e. , Arithmetic and Quantitative
Reasoning), we can distinguish Bruer’s (1 993) work on young students’
reasoning relating number lines and numerical understanding. Smith and
Thompson (2008) structured their work on arithmetic and quantities
focusing on referent-transforming operations, while Kobayashi (1 988)
and Goldenberg and Shteingold (2008) among others focus their work
on magnitudes and measures. Davydov (1991 ) and colleagues
developed a comprehensive approach to EA where the primary focus
was on expressing the basic relationships between explicit and implicit
values of quantities. Within the third approach (i.e. , Arithmetic and
Functions), Kaput’s (1 998) work was centered on the concept of
function to “algebrafy” the school curriculum. Moss, Beatty, McNab,
and Eisenband (2006) centered their study on functions as rules for

n this paper, we provide evidence on the specific areas of impact
of early algebra (EA) over time. The main argument underlying
this paper relates to the benefits of an integration ofI
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generating collections of figures. Our approach to EA, which will be
described in more detail below, has been to take functions as the central
object of algebra, expressed through multiple representations.
While the importance of integrating EA instruction into the elementary
school curriculum has been increasingly accepted (see, for example, the
“Operations and Algebraic Thinking” strand of the Common Core State
Standards), to date there has been scarce documentation of the specific
areas in which EA would make a difference in children’s mathematical
learning. The purpose of this paper is to fill this gap by detailing the
areas and aspects of algebraic understandings and representations in
which EA instruction can have an impact over time.
As has been documented elsewhere (e.g., Carraher & Schliemann,

2007; Schliemann, Carraher, & Brizuela, 2007), until recently much
research has highlighted the many difficulties encountered by
adolescents when they first learn algebra in middle or high school (e.g.,
Booth, 1 984; Kieran, 1 981 , 1 989; Vergnaud, 1985, 1 988; Demana &
Leitzel, 1 988; MacGregor, 1 996; Bednarz, 2001 ; Bednarz & Janvier,
1 996; Wagner, 1 981 ). Much of this literature has explained these
difficulties by relying on a developmental framework, arguing that
children encounter these difficulties due to the nature of formal thought
required by algebra. Thus, from this pessimistic framework, children’s
difficulties could be explained by their lack of this kind of formal
thought. Research of this nature has highlighted the difficulties
experienced by children in middle and high school.
This pessimistic perspective has been countered by research in the area
of EA. Early attempts to address these negative perspectives were
motivated on the one hand, by a mistrust that these difficulties really lie
within the children; on the other hand, by an understanding about the
nature of early mathematical learning, specifically arithmetic, that does
not exclude algebra from its midst. Early exemplars of this approach
come from both Russia (see Bodanskii, 1 991 ; Davydov, 1991 ) and the
United States (US; see Davis, 1 967, 1 971 -72, 1 985, 1 989). EA
perspectives hold, in general, that arithmetic has an inherently algebraic
character (see Schliemann, Carraher, & Brizuela, 2007) and can be
usefully regarded as a part of algebra rather than as a domain distinct
from algebra (Carraher & Schliemann, 2007). In our work, we share this
perspective and argue that a deep understanding of arithmetic
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requires mathematical generalizations and understandings of basic
algebraic principles.
The research we present here exemplifies a shift in the research

community towards understanding how algebraic learning occurs and
what resources children utilize in the learning of algebra, as opposed to
the previous focus on what children are not able to do. Moreover, our
work also exemplifies the centrality of representations in children’s
algebraic learning, building on their spontaneous ways of representing
problems and gradually introducing interactions with conventional
representations. Other examples of this shift are Radford, Bardini, and
Sabena’s (2007) study, in which they described and analyzed the various
semiotic resources utilized by 9th grade students in their passage from
the particular to the general. Their analysis suggests connections
between the syntax of the students’ algebraic formulas and the semiotic
means of objectification through which the formulas were forged.
Another set of studies (e.g., diSessa, Hammer, Sherin, & Kolpakowski,
1 991 ; Hall, 1 990; Hall, Kibler, Wenger, & Truxaw, 1989; Izsák, 2004;
Meira, 1 995) have examined what students can do if they are allowed to
build their own representations while solving problems, rather than
using external representations prescribed by researchers. This work, as
well as ours, highlights not only what students can do but also students’
capacities to build meaning for and from representations.
Since 1998, the implementation of EA activities and the documentation
of children’s learning of algebra in the early grades (e.g., Brizuela &
Earnest, 2008; Carraher, Schliemann, & Schwartz, 2008; Schliemann,
Carraher, & Brizuela, 2007, 2012) has shown that introducing algebra as
part of the early mathematics curriculum is highly feasible and has also
clarified how specific representational tools — tables, graphs, numerical
and algebraic notations, and certain natural language structures — can
be employed to help students express functional relations among
numbers and quantities and solve algebra problems. In what follows,
we describe four principles of this approach used to analyze data and
present results.
First, we adopt the position that arithmetical operations can be viewed
as functions and we view the introduction of algebraic activities in
elementary school as a move from thinking about relations among



particular numbers and measures toward thinking about relations among
sets of numbers and measures, from computing numerical answers to
describing relations among variables. This position is similar to a
broader perspective that has shown the importance of a functional
perspective that stands in contrast to a perspective that focuses on the
symbolic manipulation of equations (or equational approach; see
Bednarz, Kieran, & Lee, 1 996; Chazan & Yerushalmy, 2003; Dubinsky
& Harel, 1 992; Martinez & Brizuela, 2006; Schliemann, Carraher, &
Brizuela, 2007).
Second, we also provide students with opportunities to engage in cross-
representational activities, looking at how they establish
correspondences across various representations (see Brizuela & Earnest,
2008). In a narrow sense, algebraic reasoning concerns only algebraic-
symbolic notation. In a broad sense, algebraic reasoning is associated
with and embedded in different representational systems. In our
research, we adopt a broad view of algebraic reasoning.
Third, and related to the second point, we also believe, on the basis of
our previous data (Carraher, Schliemann, & Schwartz, 2008), that
algebraic notation would facilitate, both for adults and young learners,
to give expression to mathematical generalizations (e.g., Mason, 1996).
In our work, we provide students with opportunities to use letters to
stand both for unknown amounts and for variables. We introduce
algebraic notation gradually, allowing it to take on increasing weight
over time.
Fourth, our approach to EA includes thinking about physical quantities
and rich problem contexts as providing essential ways in which to
situate and complexify the learning ofmathematics. Contexts are crucial
to mathematics educators’ concerns since students, particularly young
students, learn mathematics through reasoning about various types of
situations and activities (e.g. Brenner & Moschkovich, 2002; Carraher,
Carraher, & Schliemann, 1985; Nunes, Schliemann, & Carraher, 1 993;
Schwartz, 1 996; Smith & Thompson, 2008; Verschaffel, Greer, & De
Corte, 2002). Thus, we share Vergnaud’s perspective (1982, 1 988,
1 994) that intellectual complexity can be gained by learning to manage
new types of situations, such as different contexts or types of problems.

21 3 Brizuela, Martinez, and Cayton-Hodges - The Impact ofEarly Algebra
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Results from two longitudinal studies (e.g., Carraher, Schliemann, &
Schwartz, 2008; Schliemann, Carraher, & Brizuela, 2007) point to the
conclusion that young students (8-11 years of age) can benefit from EA
activities and learn to: (a) think of arithmetical operations as functions
rather than as mere computations on particular numbers; (b) learn about
negative numbers; (c) grasp the meaning of variables, and not only of
instantiated values; (d) shift from thinking about relations among
particular numbers and measures toward thinking about relations among
sets of numbers and measures; (e) shift from computing numerical
answers to describing and representing relations among variables; (f)
build and interpret graphs of linear and non-linear functions; (g) solve
algebraic problems using multiple representation systems such as tables,
graphs, and written equations; and (h) solve equations with variables on
both sides of the equal sign. At the end of 4th grade in a second
longitudinal study, compared to a comparison group of 5th graders at
the same school, more of the experimental group students could: (a)
identify that a number sentence of the type 6+9=7+8 is true (85% vs.
65%); (b) handle situations that dealt with unknown quantities (44% vs.
31%); (c) fill out a table by using a functional relation (65% vs. 50%);
(d) represent a variable quantity with a letter and a quantity expressed in
terms of the variable quantity as [the letter]*3 (70% vs. 29%); (e)
identify the correct line in a graph, based on a verbal description of a
relationship (78% vs. 46%); (f) express an unknown quantity using a
letter, and other quantities in terms of this letter (56% vs. 49%); and (g)
write a full equation using letters to stand for unknown quantities (1 7%
vs. 0%).

Findings from Previous Interventions

Focus ofThis Paper

In the present paper, we present detailed analyses of the specific areas in
which we have been able to identify gains made over time among an
experimental group of students that we worked with. Our analyses
center on the results of an assessment that was given to both
experimental and comparison groups of students at the end of each
school year for the duration of our EA intervention. The following are
the research questions that guide our analyses:



a) How does the performance on the algebra assessment change
among a group of 15 experimental group children, from 3rd to
5th grade?
b) How does the performance on the algebra assessment of
experimental group students differ from the performance of
comparison group students from their same elementary school
who did not receive EA instruction?

Methodology

The sample for this study consists of an experimental group and a
comparison group. Both groups used the Investigations curriculum in
their regular mathematics lessons (Pearson Scott Foresman, 1998). Our
EA lessons were implemented by a team of researchers in addition (i.e. ,
not as a partial replacement to Investigations) to the standard
mathematics curriculum implemented by the teachers. In 3rd and 4th

grades, children participated each week in two 60-minute lessons and
two 30-minute homework review sessions; in 5th grade they participated
in one 90-minute weekly lesson and a 45-minute homework review
session. The research team’s members implemented lessons for these
students and classroom teachers conducted homework reviews. A total
of 50 lessons were taught in 3rd grade, 36 in 4th, and 18 in 5th grade. All
1 04 lessons and corresponding homework reviews were videotaped.
Experimental group: The experimental group consisted of the children
who participated in our EA lessons from 3rd to 5th grade (2003 to 2006).
Specific sample sizes will be provided in the case of each one of the
analyses carried out.
Comparison group: The comparison group consisted of a group of

students from the cohort immediately preceding the experimental group
(2002 to 2005) in the same school who, from 3rd to 5th grade, received
no EA instruction.

Sample

Assessment

Our source of data for this report is an assessment designed by the
research team which was administered once at the end of each school
year, from 3rd to 5th grade. The assessment included items that were

215 Brizuela, Martinez, and Cayton-Hodges - The Impact ofEarly Algebra
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designed by our research team, as well as items from the Massachusetts
Comprehensive Assessment System (MCAS), and the National
Assessment of Educational Progress (NAEP). At the end of each grade
children in the experimental and in the comparison groups were given
this assessment. Because of the paucity of algebra-related questions on
the NAEP and the MCAS assessments designed specifically for fourth
graders, items were drawn from NAEP and MCAS tests for grades 4, 8
and 10. All fourth grade algebra items were included as well as eighth
and tenth grade algebra items that covered themes in our early algebra
classes.
For the purposes of this study, we classified the assessment items using
a set of categories that are presented below. Each item was scored as
correct or incorrect and scores were calculated based on the number of
correct assessment items that fell into each category (one point for each
correct answer in each category). For instance, if an item was answered
correctly 10 times, then each of its related categories (i.e. , natural
language, algebraic expression, variable, extra-mathematical, functional
relation) were scored 10 for that item, and so on for every item.

Categories considered

Representation involved (either in the presentation mode or the answer

requested from the students). Central to EA (see Brizuela & Earnest,
2008) is an emphasis on multiple representations. By representations
we mean what Goldin (1998) refers to these as “the shared, somewhat
standardized representational systems developed through human social
processes” (p. 1 46). Kaput (1991 ) referred to these as “materially
realizable cultural or linguistic artifacts shared by a cultural or language
community” (p. 55). The representations we focus on in our EA
research are tables, graphs, natural language, algebraic expressions, and
pseudo-algebraic expressions. Thus, for our classification, within
representations, we considered:

a) tables, by which we mean input-output or function tables;
b) graphs, by which we mean graphs of functions in the
Cartesian plane or number lines used to represent relations
between variables;
c) natural language, by which we mean some sort of verbal
expression (written or oral) using colloquial language;



d) algebraic expressions, sometimes referred to as “symbolic”
expressions;
e) pseudo-algebraic expressions, an equation or function
expressed using pseudo-algebraic notation or non-formal
algebraic expression using icons, i.e. , 7 x =21 .

Role ofthe letter. In our work, letters in algebraic and pseudo-algebraic
expressions can hold one of two roles2: as representing an unknown, and
as representing a variable. Thus, for our classification, within the roles
of the letter, we considered:

a) unknown, where the letter represents something that needs to
be determined and verifies a set of conditions;
b) variable, where the letter represents a set of cases.

Context. Our understanding of contexts borrows from Chevallard
(1989), who distinguished between extra-mathematical and intra-

mathematical contexts. By extra-mathematical we mean contexts where
a problematic situation is raised using phenomena external to the
mathematical field. In order to be solved, this situation can be modeled
using mathematical tools. In other words, the issues to be solved are not
about the nature of the mathematical objects themselves, nor about the
relations among these objects. The objects on which the relations
operate have an intended meaning beyond mathematics. By intra-

mathematical we mean problems that appear purely from mathematical
questions and problems; they involve, “the production of knowledge in
one mathematical system through another mathematical system”
(Sadovsky, 2005, p. 27).
Central Object. In our approach, students solve problems that involve
functions or equations/inequalities. Even though we consider our work
as a functional approach to algebra, we also include equations as part of
our approach by considering equations as only one element of the
teaching and learning of algebra. In our work, the notion of a solution
to an equation was introduced as the x-value of the intersection of two
functions. We distinguish three types of central objects:

a) function, which can be thought of intuitively as a rule of
correspondence between two sets that assigns to each object in
the first set exactly one object from the second set;
b) equation, which is a condition on a set (i.e. , numbers) stated
by using the equal sign (or expressed through natural language);

217 Brizuela, Martinez, and Cayton-Hodges - The Impact ofEarly Algebra



c) inequality, which is a condition on a set (i.e. , numbers) stated
by using >, ≥, ≤, or < signs (or expressed through natural
language).

Table 1 shows the classification of all items by category.

Table 1
Classification ofitems by presented categories
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M
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E
xt
ra
-M
at
h

O1 Our design X X X X X
O2 Our design X X X X X

O3A Our design X X X X

O3B Our design X X X X X
O3C Our design X X X X

O4A Our design X X X X

O4B Our design X X X X X
O4C Our design X X X X

O5 Our design X X X X X X

O6A Our design X X X X X
O12A MCAS2007-

8thgrade
X X X

O13 MCAS2007-
8thgrade

X X X X

O15C NAEP2007-
8thgrade

X X X X X

O16 NAEP2007-
8thgrade

X X X X X X

O17A NAEP2007-
8thgrade

X X X X X
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O1 8A Our design X X X
O18B Our design X X X

O18C Our design X X X

O18D Our design X X X
T1A Our design X X X X

T1B Our design X X X X

T2 Our design X X X X X X
T3A Our design X X X X

T3B Our design X X X X

T3C Our design X X X X
T3D Our design X X XX X
T3E Our design X X X X

T4 MCAS2003-
8thgrade

X X X X X

T5 MCAS2007-
10thgrade

X X X X X

T6 MCAS2007-
10thgrade

X X X

X

T7 Own design X X X
T8 X X X X

X

X
XMCAS2007-

10thgrade
T9 MCAS2007-

10thgrade
X X X X

T11A X X X X X

X

Own design
T11B Own design X X X X X

Item Source Representation Role of
letter

Central object Context
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T11C Own design X X X X X

T11D Own design X X X X X

T11E Own design X X X X X

T12 MCAS2007-
10thgrade

X X X X

T13A NAEP2003-
8thgrade

X X X X X

T13B NAEP2003-
8thgrade

X X X X X

Item Source Representation Role of
letter

Central object
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T1 3C NAEP2003-
8thgrade

X X X X X

T14 MCAS2003-
4thgrade

X X X X X

Totals 10 17 30 10 4 31 8 34 5 3 3013

Statistical Analyses

Three types of statistical analyses were carried out. The first helped us
determine the differences in students’ performance on the algebra
assessment across different groups (i.e. , across grades and across
experimental and comparison groups). The second helped us establish
the categories of items, as previously shown in Table 1 , that were
associated with particular groups. The third helped us to establish the
clusters of groups of students that were formed when we considered
their performance on the assessment items, allowing us to establish
which groups were most similar as well as dissimilar to each other. The
set of three different kinds of analyses helped us answer our research
questions, related to the change in performance on the algebra

Context
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Comparisons ofMeans

Four nonparametric statistical tests, using the software SPSS, were used
to compare means due to the small size of the sample: A Kruskal-Wallis
Analysis of Variance (KWANOVA) was carried out to determine the
effects of the classroom intervention on the students with the end-of-
year assessments on those students (experimental group) who were
present for 3rd, 4th, and 5th grades of the EA intervention. Additionally,
three Mann-Whitney U-tests were performed comparing the scores of
assessments of the students who took part in the intervention with a
comparison group of students from the same school, also in 3rd, 4th, and
5th grades. Scores in each grade level were the number of correct
responses.

assessment from 3rd to 5th grade among the experimental group children
as well as among the 3rd to 5th grade experimental and comparison group
children. The last two analyses also allowed us to identify the kinds of
questions that were more and less challenging among these groups of
students.

Correspondence factorial analyses (CFA) were carried out in order to
study relations among categories of assessment items, grade levels, and
experimental or comparison group membership using the software
SPAD Recherche 5.6. Correspondence factorial analysis is a technique
of multivariate analysis that relates active variables (in our case,
categories of assessment items and a combined grade level/experimental
or comparison group membership variable), modalities of such
variables, and individuals by projecting such relations on a factorial
plane (see Scheuer, de la Cruz, Pozo, Huarte, & Sola, 2006). According
to customary criteria, a variable modality is taken into account when its
contribution to one or both factorial axes is higher than the average of
all variable modality contributions. Groups are formed by associating
modalities with a contribution that are higher than average and that lie
relatively close on the factorial plane.
From the original assessments, we only included those 43 items that

were the same across every grade. For instance, at the end of 5th grade
we included an additional set of items. Since we cannot compare the

Correspondence Factorial Analysis
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students’ performance across grades for these additional items, they
were not included in our analyses.

Categories of assessment items and grade level/experimental or
comparison group membership (3rd grade experimental; 4th grade
experimental; 5th grade experimental; 3rd grade comparison; 4th grade
comparison; 5th grade comparison) were considered as active variables.
The following were the CFA carried out:

1 ) 3rd – 5th grade experimental group students: active variables
were: the 12 sub-categories of assessment items (see Table 1 );
3rd grade experimental group students; 4th grade experimental
group students; and 5th grade experimental group students. We
tested the association between group membership and each one
of the 12 categories of assessment items. The question underlying
this analysis was: did the association to particular kinds of items
change over time, from 3rd to 5th grade (that is, with increased
exposure to our EA interventions)?
2) 3rd – 5th grade experimental vs. 3rd – 5th comparison group
students: active variables were the 12 sub-categories of
assessment items; 3rd grade experimental group students; 4th gra-
de experimental group students; 5th grade experimental group
students; 3rd grade comparison group students; 4th grade
comparison group students; and 5th grade comparison group
students. We tested the association between group and grade
membership and each one of the 12 categories of assessment
items. The question underlying this analysis was: did the
association to particular kinds of items change over time, from 3rd

to 5th grade differently for students who participated in our EA
interventions and those who did not?

Hierarchical Cluster Analysis

To verify the grouping of individuals obtained from the CFA, a
Hierarchical Cluster Analysis (HCA) was performed, using the most
important components obtained from the CFA as variables. For this
analysis the order in Ward’s method was used to identify data
partitioning (Lebart, Morineau, & Piron, 1 995; Saporta, 1 990), using the
software SPAD Recherche 5.6.
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Results

For these analyses, we considered as our sample a sub-group of 15
students from a larger group of 26 students3 with whom we had worked
from Fall 2003 to Spring 2006 while they were in 3rd – 5th grade of
elementary school, at a public school in the Boston area, who
participated in our EA activities. A Kruskal-Wallis Analysis ofVariance
(KWANOVA) and post hoc analyses were conducted to compare
students’ end-of-year assessments across all three grades. The analyses
revealed that scores rose significantly from grade 3 (mean=23.6) to
grade 4 (mean=33.3), but there was no significant difference between
the assessment scores in grade 4 and grade 5 (mean=29.7), χ2(2,
N=15)=19.90, p<0.001 4. In contrast, when looking at the 22
comparison students that were present for grades 3 (M=22.1 ), 4
(M=21 .9), and 5 (M=23.2), the scores did not significantly change
across any grade levels, χ2(2, N=22)=0.076, p=0.963.
In general, what we found through interpretation of the groups formed
in the CFA planes, which are not shown here due to space limitations, is
that, relative to their scores in 4th and 5th grade, 3rd graders found most
challenging assessment items that involve inequalities and graphs.

Third – Fifth Grade Experimental Group Students

Grade / Group Membership

Table 2
Contributions to the variation in students’ performance on the twelve

sub-categories of assessment items of the combined active variable

related to grade/group membership. In bold, we indicate contributions

to the variation that are greater than the mean.

Axis 1 Axis 2

3rd Grade Experimental 70.59 0.1 2

5th Grade Experimental 1 5.94 51.15

4th Grade Experimental 1 3.46 48.73

Thus, we could put forth the hypotheses, at this point, that our EA
intervention was helpful and successful in these areas, helping students
as they progressed in their EA experience. In addition, an interesting
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result of this analysis is how well 3rd graders perform on items that
involve variables and algebraic expressions, which are at the center of
the content typically associated with algebra. See Tables 2 and 3 for
value contributions.

Items T13A and T13B (see Figure 1 ) are the items in which students had
the most difficulties when they were in 3rd grade (the only items in
which 3rd graders scored zero points). Item 13 involves two functions
that are given by their graphs in the Cartesian plane. In the first
question, the students are asked to interpret the graph that shows volume
as a function of time. In the second question, students are asked to
determine the x-value of the intersection point. The questions involve a
graph, natural language, variables, an extra-mathematical context, and a
functional relation. This question was the most difficult for 3rd graders
in our study.
To verify the grouping of individuals obtained from the CFA, a HCA

was carried out after the CFA, using the software SPAD Recherche 5.6.
The HCA confirmed the grouping of 4th and 5th grade on one hand and
3rd grade on the other. Students’ performance is clearly grouped
together when they are in 4th and 5th grade, and distinguished from their
performance in 3rd grade. The cluster analysis also confirmed that the
group formed by 3rd grade is characterized by items that involve tables

Sub-categories ofAssessment Items

Table 3
Contributions to the variation in students’ performance on the twelve

sub-categories ofassessment items ofthe active variable related to sub-

categories of assessment items. In bold, we indicate contributions to

the variation that are greater than the mean.

Axis 1 Axis 2

Representation
Table 22.29 8.08

Graph 29.84 4.85

Natural Language 4.94 8.23

Algebraic Expression 14.57 3.90

Pseudo-Algebraic Expression 1 .82 19.13
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(test value = 1 .98, p = 0.0236) and under-characterized by items that
involve graphs (test value = -2.30, p = 0.0083). The results of the cluster
analysis, along with the CFA, shows that students’ performance is
highly associated with the kinds of representations involved in the
assessment items.
Given our results some may argue that these are simply a matter of

children growing older, of development, and that our EA intervention
had nothing to do with these gains. Thus, for these reasons, we carried
out a second analysis, including not only the experimental group
students from 3rd-5th grades, but also the comparison group students for
whom we have parallel data.

Figure 1 . Items T13A (i.e. , interpreting the graph and extending both lines until
they meet) and T13B (i.e. , “assume that the rates…”).
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Third – Fifth Grade Experimental vs. Comparison Group Students

Using a Mann-Whitney U-test with the software SPSS, we compared
the end-of-year assessment scores of the 23 experimental students who
participated in the study in 3rd grade (M=24.09) with the scores of 30
students from the same school who took the same assessment in their
3rd grade year, one year prior to the beginning of our EA intervention
(M=21 .08). The experimental students did perform better than the
comparison students, but the difference was not significant, U(51 ) =
307.00, p = 0.495. With the 4th grade assessments, we compared the
scores of the 27 experimental students who participated in the study in
4th grade with the scores of the same 30 comparison students described
above in 4th grade5. A Mann-Whitney U-test indicated that in the 4th

grade, the experimental students (M=31 .00) performed significantly
better than the comparison students (M=21 .41 ), U(55) = 194.00, p =
0.001 . Finally, we compared the scores of the 22 experimental students
who participated in the study in 5th grade with the scores of 24 students
from the same school who took the same assessment in their 5th grade
year, one year prior to the year in which our experimental students were
in 5th grade. A Mann-Whitney U-test indicated that the experimental
students (M=29.36) once again performed significantly better than the
comparison students (M=23.21 ), U(44) = 155.50, p = 0.017.
For the CFA, we considered as the experimental group the sub-group

of 15 students who remained in the study for its duration, as detailed
above. As the comparison group, we considered 22 students from a
larger group 30 students6 in the cohort immediately preceding the
experimental group (2002 to 2005) who, from 3rd to 5th grade, had been
taught by the school’s regular elementary school teachers and received
no algebra instruction.
The results of the CFA suggested the sub-categories of assessment

items on which each of the different groups did better than what they
typically did (See Tables 4 and 5). Scrutiny of the factorial plane reveals
a dichotomy in the kinds of items that are associated with experimental
group students on one hand and comparison group students on the other
hand. The three comparison group grades are associated with items that
involve natural language, equalities, inequalities, graphs, unknowns, and
pseudo-algebraic expressions. The experimental group grades are
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associated with items that involve variables, functional relations, intra-
mathematical contexts, tables, and algebraic expressions. The
experimental and comparison groups can be distinguished by these
kinds of items. Another way to see this is to say that our intervention
made the most difference on students’ performance on items that
involve variables, functional relations, intra-mathematical contexts,
tables, and algebraic expressions.

Grade / Group Memberhip

Table 4
Contributions to the variation in students’ performance on the twelve

sub-categories of assessment items of the combined active variable

related to grade/group membership. In bold, we indicate contributions

to the variation that are greater than the mean.

Axis 1 Axis 2

3rd grade control 6.01

Axis 3

1 3.9411 .01
4th grade control 6.01 1 3.9411 .01
5th grade control 20.61 57.690.11
3rd grade experimental 61.89 6.9817.52

4th grade experimental 2.91 7.4635.90

5th grade experimental 2.57 0.0024.47

A HCA carried out after the CFA confirmed the grouping of
experimental grades on the one hand and comparison groups on the
other. The first distinction is between 3rd grade experimental students
and the rest of the students. The second split that occurs in the cluster
analysis is between 4th and 5th grade experimental students on one hand
and all the comparison groups on the other. Our interpretation is that the
intervention helped to distinguish, among the experimental group
students, between 3rd grade and 4th and 5th grade. In the comparison
groups, the lack of an EA intervention led all students, from 3rd to 5th

grades, to perform quite similarly. The cluster analysis also confirmed
that the group formed by the comparison group students is under-
characterized by items that involve algebraic expressions (test value =
-2.60, p = 0.0047). In contrast, the group formed by 3rd grade
experimental students is characterized by items that involve algebraic
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Sub-categories of assessment items

Table 5
Contributions to the variation in students’ performance on the twelve

sub-categories ofassessment items ofthe active variable related to sub-

categories of assessment items. In bold, we indicate contributions to

the variation that are greater than the mean.

Axis 1 Axis 2

Representation

17.09

Axis 3

0.1 68.00Table

16.31 14.322.88Graph

2.27 2.1 71 .20Natural Language

33.80 0.894.93Algebraic Expression

7.02 0.0039.20Pseudo-Algebraic Expression
Role of the letter
Variable 7.51 0.241 .90
Unknown 5.84 3.390.97

Central object
Equality 2.1 8 13.174.98
Inequality 4.52 4.2425.34

Functional relation 1 .06 7.290.36
Context
Intra-mathematical context 0.1 2 51.969.03

Extra-mathematical context 2.27 2.1 71 .20

expressions (test value = 1 .99, p = 0.0232) and under-characterized by
items that involve graphs (test value = -2.1 2 p = 0.0169). Once again,
similarly to what we found in the comparison among 3rd-4th grade
experimental students, students’ performance depends on the type of
representation involved in the assessment item given that students’
performance is highly associated to the kinds of representations
involved in the assessment items.

Items O5 (see Figure 2), O6A (see Figure 3), and T7 (see Figure 4) are
interesting in that they are the items in which comparison group students
performed the least well and scored the lowest.
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Item O5 involves a functional relation described using colloquial
language where students are asked to write the formula. The item
involves a table, natural language, an algebraic expression, the use of a
variable, an extra-mathematical context, and a functional relation. Item
O6A involves a functional relation presented in colloquial language

Figure 2. Item O5 from the assessment.

Figure 3. Item O6A (i.e. , “which of the graphs…”) from the assessment.
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Figure 4. Item T7 from the assessment.

where students are asked to choose a graph among three different graphs
represented in the same Cartesian plane. The item involves a graph,
natural language, the use of a variable, an extra-mathematical context,
and a functional relation. In item T7 students are presented with a set
described by a simple inequality (greater than or equal to -1 and less
than or equal to 3) and are asked to represent it in the number line. The
item involves a graph, an unknown, an intra-mathematical context, and
an inequality.

In summary, our intervention had an impact on students’ performance
on items that involve variables, functional relations, intra-mathematical
contexts, tables, and algebraic expressions. In these specific areas,
children who have been exposed to an EA intervention seem to do
particularly well.
Item O5, described above, and item T2, in which students must work

on a “K-number line” (see Figures 7 and 8) are examples of items that
comparison students found challenging, while our experimental students
did not. Item O5 asked students to generate an algebraic rule from a
story expressed through natural language. Experimental students tended
to express the rule algebraically (see Figure 5) while comparison
students tended to express this as a single numeric answer, or left the
question blank (see Figure 6).

230REDIMAT- Journal ofResearch in Mathematics Education, 2 (2)



Figure 5. I.P. (3rd grade
experimental) displays work on item

O5.

Figure 6. J.T. (5th grade comparison)
displays work on item O5.

In item T2, students are told of a number of transformations on a K-
number line. Students must express the transformations on the number
line and provide a final result. Many comparison students failed to
express that this was a story that began at K and instead treated the
number line as static, expressing the final answer as -4 when the correct

Figure 7. D.H. (5th grade
comparison) displays work on

item T2.

Figure 8. A.V. (3rd grade
experimental) displays work

on item T2.

Discussion

answer was K-2, or providing some other numerical answer (see Figure
7). Experimental group students, even in the 3rd grade, were able to
express the relationships in terms of a variable quantity (see Figure 8).

In this paper, we have been able to provide evidence, through different
sources, of the specific areas of impact of EA instruction on students’
performance in algebra. This paper adds to the growing body of
evidence regarding the benefits of EA by providing specific information
regarding the representations and concepts in which students exposed to
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EA most distinguish themselves. Furthermore, it also adds to earlier
research, such as that carried out by Bodanskii (1 991 ) and Davydov
(1991 ) regarding the positive impact of an early access to algebra.
As described in the results, the statistical comparisons presented show
significant differences in performance between children who have and
have not had access to an EA intervention. In terms of the CFA and
cluster analyses, when comparing experimental and comparison group
students, we found that our EA intervention had the most impact on
children’s understanding, acquisition, and performance on items that
dealt with variables, functional relations, intra-mathematical contexts,
tables, and algebraic expressions. As stated in our introduction, the
focus of our EA approach includes four main components: (1 ) focus on
a functional approach to algebra; (2) focus on multiple representations;
(3) focus on the use of letters to represent variables; and (4) focus on
exploring problems in a diversity of extra-mathematical contexts.
Therefore, we find a high degree of overlap between the focus of our
instruction and the areas in which our experimental group students did
better than their comparison group peers. This evidence shows, in turn,
that young students can learn algebra meaningfully, and make sense of
and use algebraic tools; this stands in contrast to previous research that
has highlighted what students cannot do after receiving instruction on
algebra.
As stated in the introduction, the literature has tended to document the
difficulties that young students face when learning algebra. We argue
that the data we have here presented helps to frame the above
shortcomings regarding young students’ abilities and approaches in
algebra in terms of a difficulty that lies mostly if not entirely in adults’
hands: we have not had the sense to teach algebra earlier. We believe
our data help to confirm that the above shortcomings are not usual once
children have engaged in the study of algebraic reasoning in the context
of an EA experience. Furthermore, the results of our CFA indicate that
3rd graders in the experimental group perform relatively well compared
to when they are in 4th and 5th grade and on items that involve variables
and algebraic expressions. Our results would look quite different if
children exposed to an EA experience had simply done well on
problems involving verbal statements, or pseudo-algebraic expressions.
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However, they tended to do well on what many consider to be the
defining points of algebra: variables and algebraic expressions.
In the different analyses carried out we found time and again that

students’ performance was associated with the type of representation
involved in the assessment item. For instance, comparison group
students find items that involve algebraic expressions particularly
difficult compared to the experimental group students and other kinds of
items, whereas students in the 3rd grade experimental group find them
relatively less difficult compared to other items and to themselves in
later grades. Graphs, on the other hand, are comparatively more difficult
for 3rd grade experimental group students. Furthermore, when compared
to their frequencies of correct responses in 4th and 5th grade, 3rd graders
do relatively better on items that involve tables and relatively less well
than expected on items that involve graphs. These data connect to a
larger line of research that indicate the relevance of exploring
understandings through different representations (see Brizuela &
Earnest, 2008) as well as on the difference that it makes to explore
seemingly similar problems through different representations (see
Zhang, 1997; Zhang & Norman, 1994, 1 995). Doing well on an algebra
problem does not mean doing well in all kinds of representations, for
instance. Further, we need to explore students’ understandings through
a variety of different representations in order to gain a full picture of
their conceptualizations.
We also evaluated the experimental group students’ results on the

Massachusetts standardized test in mathematics (the Massachusetts
Comprehensive Assessment System or MCAS) for 4th graders7 before
(2002 and 2003) and after (2004 and 2005) the project’s intervention.
The percentage of children at Advanced or Proficient levels increased to
44% from 36%, while the percentage of those in the Needs
Improvement and Fail categories decreased to 56% from 63%. The
overall improvement of the experimental group was also better than the
overall improvement in the school district (8.5% vs. 4.5% points), but
these differences were not statistically significant.
We do note, however, the limitations of this study. First, the small

sample size (one school) only allowed for a comparison group as
opposed to a matched control group. Thus, we do not know if the two
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groups began at the same level of ability (though, anecdotally from the
teachers, we are led to believe that if any mismatch existed at the start, it
would be that our experimental group was thought to be the weaker of
the two cohorts). Additionally, the lack of an established assessment in
algebra for elementary school students and thus use of many items of
our own design does not allow for comparison of the results to a larger
group of students who were administered the same items. Finally, as this
was supplementary instruction, the comparison group may have
received less overall time engaged in mathematics instruction.

Future Directions

Much work remains needed regarding the short and medium term
benefits of EA. For instance, it is our hypotheses that access to algebra
needs to happen early, needs to be sustained over time, and needs to
occur frequently. That is, algebra cannot be considered as an add-on
unit for the end of the curriculum, but needs to be threaded throughout
the mathematics curriculum, as has been frequently advocated by Kaput
(1991 , 1 998). The impacts over time, we believe, are significant.
Further evidence in support of this hypothesis is still needed.
In this paper, we have presented data showing that young students can
learn algebra, detailing the specific areas of impact. Results from a
recent study (see Schliemann, Carraher, & Brizuela, 2012) have also
shown that EA, besides promoting the learning of algebra in primary
school, promotes improvement in later algebra learning and later
mathematical learning. This kind of data could have great impacts on
teacher preparation. If we are to seriously advocate for the early
introduction of algebra in elementary school, then we need to also
engage in an exploration of adequate teacher preparation. Finally,
positive results in the long term could eventually lead us to inspect and
eventual modify the contents of algebra courses at the middle school
and high school levels.

Notes
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lizing the paper’s analysis. The authors also thank the other members of the research
team, particularly Mary Caddle, who assisted in the data processing.
2 We are not claiming that these are the only two uses of letters (Usiskin, 1 988). These
are just the most prominent in our work.
3 These 15 students were those who remained with us for the duration of the study, from
3rd through 5th grade.
4 Our hypothesis for this lack of increase in the algebra assessment from 4th to 5th grade
is that the focus of most of our teaching in 5th grade was the manipulation of equations.
This content was not part of the assessment items given from 3rd-5th grade. The 5th
grade students did receive an additional assessment on equations which is not part of
this analysis. Furthermore, the intensity of our teaching decreased significantly in 5th

grade, when we were in the classes for only 18 90-minute lessons. We would like to
hypothesize, on the basis of this data, that algebra instruction needs to happen not only
early, but also needs to be sustained and frequent.
5 The numbers of students in each grade level varied because of new arrivals as well as
departures from the school from year to year.
6 For the purposes of this CFA, we will only focus on the 22 students who remained in
the school from 3rd through 5th grade, and for whom we have longitudinal data.
7 At the time of this intervention, MCAS mathematics assessments were not
administered in the 3rd or 5th grades.
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